ON THE DOUBLING ALGORITHM FOR A (SHIFTED)
NONSYMMETRIC ALGEBRAIC RICCATI EQUATION
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Abstract. Nonsymmetric algebraic Riccati equations for which the four coefficient matrices form
an irreducible M-matrix M are considered. The emphasis is on the case where M is an irreducible
singular M-matrix, which arises in the study of Markov models. The doubling algorithm is considered
for finding the minimal nonnegative solution, the one of practical interest. The algorithm has been
recently studied by others for the case where M is a nonsingular M-matrix. A shift technique
is proposed to transform the original Riccati equation into a new Riccati equation for which the
four coefficient matrices form a nonsingular matrix. The convergence of the doubling algorithm is
accelerated when it is applied to the shifted Riccati equation.
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1. Introduction. We consider the nonsymmetric algebraic Riccati equation (or
NARE)

XCX - XD-AX +B =0, (1.1)

where A, B,C, D are real matrices of sizes m X m, m X n,n X m,n X n, respectively,
and we assume throughout that

(1.2)

S

-B A

is a nonsingular M-matrix or an irreducible singular M-matrix. As usual in algebraic
Riccati equations theory one associates with the equation (1.1) the matrix

H:{g :i}. (1.3)

Some relevant definitions are given below.

For any matrices A, B € R™*", we write A > B(A > B) if a;; > b;;j(a;; > bsj)
for all 4, j. A real square matrix A is called a Z-matrix if all its off-diagonal elements
are nonpositive. Any Z-matrix A can be written as sI — B with B > 0. A Z-matrix
A is called an M-matrix if s > p(B), where p(-) is the spectral radius; it is called
a singular M-matrix if s = p(B) and a nonsingular M-matrix if s > p(B). Given a
square matrix A, we will denote by o(A) the set of the eigenvalues of A.

The NARE (1.1) has applications in transport theory and Markov models [17,
22, 23]. The solution of practical interest is the minimal nonnegative solution. The
equation has attracted much attention recently [2, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 21].
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Some properties of the NARE (1.1) are summarized below. See [7] and [8] for
more details.

THEOREM 1.1. The equation (1.1) has a minimal nonnegative solution X. If M
is irreducible, then X > 0 and A—XC and D —CX are irreducible M -matrices. If M
is a nonsingular M -matriz, then A— XC and D — CX are nonsingular M -matrices.

We will also need the dual equation of (1.1)

YBY ~YA—-DY +C =0. (1.4)

This equation has the same type as (1.1): the matrix
A -B
]
is a nonsingular M-matrix or an irreducible singular M-matrix if and only if the
matrix M is so. The minimal nonnegative solution of (1.4) is denoted by Y.

A number of numerical methods have been studied for finding the minimal solu-
tion X. Recently, a doubling algorithm is studied in [14] and is shown to be efficient.
The doubling algorithm itself is not new; it was studied in [1], for example. However,
the presentation in [14] provides some new information about the algorithm, which
makes its analysis easier for the NARE (1.1).

In [14], the discussion is limited to the case where M is a nonsingular M-matrix.
In the application of the NARE in Markov chains, however, the most important case
is the one where M is an irreducible singular M-matrix with zero row sums. So in this
paper, we will assume that M is an irreducible (singular or nonsingular) M-matrix,
with the emphasis on the singular case.

We show the applicability and convergence properties of the structure preserv-
ing doubling algorithm of [14] when M is singular. In particular we show that the
algorithm has quadratic convergence when 0 is a simple eigenvalue of H. From the
numerical experiments performed so far, the doubling algorithm shows a linear con-
vergence of rate 1/2 if 0 has algebraic multiplicity equal to 2.

We introduce an alternative approach to treat the singular case based on a shift
technique. The shift consists in performing a rank-one correction of the matrix H
which moves one zero eigenvalue to a suitable nonzero real number. We construct a
new Riccati equation associated with the shifted H, which has the same solution X of
the original one, while the coefficients of the new Riccati equation form a nonsingular
matrix if 0 is a simple eigenvalue of H.

We analyze the structure preserving doubling algorithm for the new Riccati equa-
tion and show that its convergence is faster (when no breakdown is encountered) than
the convergence of the same algorithm applied to the original equation. In particu-
lar, when 0 is a double eigenvalue of H, the doubling algorithm applied to the new
equation is shown to have quadratic convergence.

Numerical results show the effectiveness of the shift technique.

The paper is organized as follows. In Section 2 we recall some properties of the
Riccati equations and nonnegative matrices. In Sections 3 and 4 we show that the
structure preserving doubling algorithm of [14] can be applied also to the case where
M is irreducible singular and show convergence results. In Section 5 we present the
shift technique. In Section 6 we analyze the doubling algorithm applied to the new
Riccati equation. In Section 7 we show some numerical experiments.
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2. Preliminaries. When M is an irreducible singular M-matrix, by the Perron—
Frobenius theory 0 is a simple eigenvalue and there are positive vectors u and v such
that

WM =0, Mv=0, (2.1)

and the vectors u and v are each unique up to a scalar multiple.
For any solution S of the Riccati equation (1.1), the matrix H of (1.3) satisfies

I 1
nls]=[5]n
where R = D — C'S. The eigenvalues of the matrix R are a subset of the eigenvalues
of H.

Since H = JM, where J = [ In 0

0 —-I,
and uT.J and v are the left and right eigenvectors corresponding to the eigenvalue 0.

Writing u?' = (uT ul) and vT = (v 01, with u1,v; € R and ug, v € R™, one
can define p = ufvy — ul'vs.

The number p determines some properties of the equation. Depending on the
sign of p and following a Markov chain terminology, one can classify the Riccati
equations associated with an irreducible singular M-matrix in three categories: a
Riccati equation will be called

(a) positive recurrent if p > 0;

(b) null recurrent if u = 0;

(c) transient if u < 0.

The close to null recurrent case, i.e. the case u ~ 0, deserves a particular atten-
tion, since it corresponds to an ill-conditioned zero eigenvalue for the matrix H, in
fact if u and v are normalized such that ||ulls = ||v||2 = 1, then 1/|u| is the condition
number of the zero eigenvalue for the matrix H (see [6]).

In fluid queues problems, the vector v is known being the vector of ones, which
will be denoted by e. In general v and u can be computed by performing a LU
factorization of the matrix M and solving two triangular linear systems.

The next results concern pu, and are proved or follow easily from results shown in
7,8, 11].

THEOREM 2.1. Let M be an irreducible singular M -matriz, and let X and Y be
the minimal nonnegative solutions of (1.1) and (1.4), respectively. Then the following
properties hold:

(a) if u> 0, then Xv; = ve and Yvg < vy;

(b) if p =0, then Xv; = vy and Yvy = vy;

(c) if p <0, then Xv; < vy and Yvy = v;.

THEOREM 2.2. Let M be an irreducible M-matriz, and let Ay, ..., Apt+n be the
eigenvalues of H = diag(I,,, —I,,)M ordered by nonincreasing real part. Then A, and
Ant1 are real and

} , then H has a one dimensional kernel

Re/\n+m <. < Re/\n+2 < /\n+1 <0< )\n < Re)\n_l < ... < Re\;.

The minimal nonnegative solution X of the equation (1.1) and Y of the dual equation
(1.4) are such that the o(D — CX) ={\1,..., A} and 0(A— XC) =0(A—-BY) =
{_)\n+17 R _)\ner}'
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If p > 0 then A\, = 0, 1 < 0; if p = 0 then A\, = Apy1 = 0 and there
ezists only one linearly independent eigenvector for the eigenvalue 0; if p < 0 then
An > 0, )\n+1 =0.

In the sequel, we will need some basic results about M-matrices. The first result
can be found in [3], for example.

THEOREM 2.3. For a Z-matriz A, the following are equivalent:

(a) A is a nonsingular M-matriz.

(b) A7t >0.

(¢) Av >0 for some vector v > 0.

(d) All eigenvalues of A have positive real parts.

The equivalence of (a) and (c) in Theorem 2.3 implies the next result.

LEMMA 2.4. Let A be a nonsingular M-matriz. If B > A is a Z-matriz, then B
is also a nonsingular M -matrix.

Most of the statements in the following result are also well known.

LEMMA 2.5. Let M be a nonsingular M-matriz or an irreducible singular M-
matriz. Partition M as

M:{Mﬂ ]\412}7

M21 M22

where My, and Mays are square matrices. Then My, and Mo are nonsingular M-
matrices. The Schur complement of M1y (or Mag) in M is also an M -matriz (singular
or nonsingular according to M). Moreover, the Schur complement is irreducible if M
ts irreducible.

REMARK 2.6. The last statement in Lemma 2.5 follows from Theorem 2.3 of [20],
where the irreducibility of the Schur complement is proved for any irreducible singular
M-matrix of the form I — P with P stochastic. For a general irreducible M-matrix
M, we have M = s(I — B) for some scalar s > 0 and some irreducible B > 0 with
p(B) < 1. Note that if we replace B with a stochastic matrix with the same nonzero
pattern, there will be no change of the nonzero pattern in the Schur complement. In
other words, the irreducibility will not change.

3. The doubling algorithm. In this section we review the structure preserving
doubling algorithm (SDA) for the NARE (1.1) and show that the algorithm is well-
defined when M is an irreducible singular M-matrix. When M is a nonsingular
M-matrix, the algorithm has already been shown to be well defined in [14], although
the selection of a parameter in the algorithm is slightly more restrictive in [14].

For the minimal nonnegative solution X of the NARE (1.1), we have

[ 4]-[4]e

where H is defined in (1.3) and R =D — CX.
Using the Cayley transform

z—°
C,:z , 3.2
¥ Hz—i—’y (3.2)

with a scalar v > 0, we can transform (3.1) into

- | g |=erean]| ¢ |n, (33)
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where
R, = C,(R) = (R+~1)" (R—~1).

Note that R 4 I is nonsingular since R is an M-matrix by Theorem 1.1. For any
v > 0, the matrix M, = M + I is a nonsingular M-matrix. So

A, =A+~I, Dy=D+~I
are nonsingular M-matrices. Let
W,=A,-BD;'C, V,=D,-CA;'B (3.4)
be the Schur complements of D, and A, respectively, in M,. They are both non-

singular M-matrices by Lemma 2.5. It is shown in [14] that (3.3) can be reduced
to

K{é}:L[;;]RM (3.5)

by premultiplying both sides of (3.3) with a proper nonsingular matrix, where

SISl

-H, I 0 F,
with
Ey=I-2V7, Fy=I1-29W]1 (3.6)
G, =2yDJ'CW; ', Hy,=27W;'BD]". '
Similarly, for the minimal nonnegative solution Y of the NARE (1.4), we have
Y Y
-0 |y | s, = | (3.7
and then
Y Y
k[T ]s.=2[ Y], -

where S, = (S +~I)7'(S —~I) with S = A — BY being an M-matrix.

The doubling algorithm presented in [14] is the following, where the sequences
{H} and {G}} are going to approximate X and Y, respectively.

ALGORITHM 3.1.

Ey=E, Fk=F, Gy=G, Hy=H,,
Eipy1 = Ey(I — GpHy,) ' Ey,

Fi1 = Fr(I — H,Gy) "' Fy,

Gk+1 =Gy + Ek(I — Gka)_leFk,

Hyy1 = Hy, + Fp(I — HyGy) ' HLE}.
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In this section we show that the algorithm is well-defined. The convergence be-
havior of the algorithm will be studied in the next section.

THEOREM 3.2. Let M be an irreducible M -matriz and

v > maX{lrgnl_%ﬁ Gy 1A dii},
where a;; and d;; are the diagonal elements of A and D, respectively. Then E., F,,
R,, S, < 0. Moreover, 0 < G, <Y,0< H, < X,Gy,H, #0, I - G,H, and
I — H,G,, are nonsingular M-matrices.
Proof. We have
Ey=1-29V, ' =V YV, —29I).

Since V; is the Schur complement of A, in the irreducible nonsingular M-matrix M.,
it is also an irreducible nonsingular M-matrix by Lemma 2.5. So V7! > 0 (see [3]).
Since v > maxi<icn dis, Vo — 291 = —yI + D — CAJ'B < 0. Since V, — 291 is
irreducible, it has no zero columns. It then follows that F, < 0.

Since R = D — CX is an irreducible M-matrix by Theorem 1.1, R + I is an
irreducible nonsingular M-matrix and (R + ~I)~! > 0, for any v > 0. For v >
maxi<i<n dii, R —vI =D —~vI —CX < 0. Since R — v/ is irreducible and thus has
no zero columns, it follows that R, = (R+~I) (R —~I) < 0.

Similarly, using v > maxi<;<m @i, we can prove that £, <0, Sy <0.

It is clear that G, H, > 0. Since M is irreducible, B,C # 0. It follows that
H,,G, # 0. It is shown in [14] that X — H, = F, XR,. Since F;,XR, > 0, we have
0 < H, < X. Similarly, we have 0 < G, <Y. So 0 < G,H, <Y X. By Theorem 2.1
we have Y Xv; < v. Thus p(G,H,) < p(YX) < 1 by the Perron-Frobenius theory.
Therefore, I — G, H, is a nonsingular M-matrix by Theorem 2.3. Similarly, I — H,G,
is a nonsingular M-matrix. O

THEOREM 3.3. Let M be an irreducible M -matrixz. Then for k > 1, Ey, F, > 0,
Hy 1 < H, < X, Gy_1 < Gy <Y and I — H,Gy,I — GipHy, are nonsingular M -
matrices.

Proof. For any nonnegative matrices U, V, W such that UV W is defined, if U, W >
Oand V # 0 then UVW > 0. Since Ey, Fy < 0 and I —GoHy, I —HyGg are nonsingular
M-matrices, we have

FEi, N >0, H;> Hy, G > Gy.
For the doubling algorithm, it is shown in [14] that
X—-H =FRXR, Y-G =EYS.

Thus, H; < X and G; < Y. Then, as in the proof of Theorem 3.2, I — Gy H; and
I — H1G; are nonsingular M-matrices. The statements in the theorem are now easily
proved by induction. 0

4. Convergence of the doubling algorithm. For the doubling algorithm, we
have (see [14])

X —Hy=FXRY, Y -Gy =EYS?,

E,=(I-GX)R2 <R¥, F,=(-HY)S¥ <5 (4.1)
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for each kK > 1. So
X —Hy=(I - HY)S* XR? < $2 XR?, (4.2)
Y -Gr=(I-GX)R2YS? < Ry s (4.3)

When M is an irreducible nonsingular M-matrix, we have p(R,) < 1 and p(Sy) <
1. It follows that { Hy} converges to X, {G)} converges to Y, {E}} and {F}} converge
to 0, all quadratically. This result is shown in [14] under the assumption that v >
max{max a;;, max d;; }, but without the irreducibility assumption. Here we would like
to allow v = max{max a;;, max d;; }, since this v will be shown to be optimal in some
sense. From (4.2) and (4.3), we also have

lim sup VI Hy = X[ < p(R,)p(S), (4.4)

lim sup VG =Y < p(Ry)p(S). (4.5)

THEOREM 4.1. Let M be an irreducible singular M -matriz.
(a) If u >0, then {Hy} ({Gi}) converges to X (Y') quadratically with

limsup /[ Hy — X < p(5,) <1, lim sup VG =Y < p(S,),
— 00

k—oo

{Fy} converges to 0 quadratically with

lim sup VIIE < p(S5),
and {Ey} is bounded.
(b) If u <0, then {Hy} ({Gr}) converges to X (Y) quadratically with

timsup */[H; = X[ < p(R,) < 1, Tmsup /G = V] < p(R,)

k—o0

{Ey} converges to 0 quadratically with
limsup /[ Ex[| < p(R),
k—o0

and {Fy} is bounded.

(¢) If p =0, then {Hy} converges to X, {Gy} converges to' Y and {Ey}, {F)}

are bounded.

Proof. When p > 0, p(S,) < 1 and p(R,) = 1. Moreover, —1 is a simple
eigenvalue of R, and there are no other eigenvalues on the unit circle. When p < 0,
p(R,) < 1 and p(S,) = 1. Moreover, —1 is a simple eigenvalue of S, and there are
no other eigenvalues on the unit circle. The statements in (a) and (b) are then valid
in view of (4.1), (4.2) and (4.3).

When p =0, p(R,) =1, —1 is a simple eigenvalue of R, and there are no other
eigenvalues on the unit circle. Also, p(S,) = 1, —1 is a simple eigenvalue of S,
and there are no other eigenvalues on the unit circle. The boundedness of {E)} and
{Fy} then follows immediately. However, from (4.2) and (4.3), we cannot see the
convergence of {Hy} and {Gr} to X and Y, respectively. So we will take a different
approach.
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For the minimal solution X of (1.1), we have from (3.5)

E,=(I—-G,X)R,, X —H,=F,XR,. (4.6)

e2)
Since 0 < G4 X < Y X, I-G,X is anonsingular M-matrix as in the proof of Theorem
3.2. Eliminating R, in (4.6) gives
X=FX(I-G,X)'E,+H,. (4.7)
We now consider the basic fixed-point iteration for (4.7):

Xip1 = P, Xi(I — G, X)) 'Ey+ Hy, Xo=0. (4.8)

It is easily proved by induction that I — G, X}, is a nonsingular M-matrix and X; <
Xi41 < X for all k£ > 0. Therefore, lim X}, = X with 0 < X < X. Since I — G, X is
a nonsingular M-matrix, so is I — G,X. Thus we have

X=FX(I-G,X)'E, + H,. (4.9)
We are going to show X = X. Let ]TL, =(- G,y)/(\')’lE.y. Then
E,=(I-G,X)R,, X-H,=F,XR,.

So instead of (3.5) we have
I I ]~
K[ ][ L]5 a0
which can be transformed back to
H@H-v0)| L =] LR (4.11)
Mg |= | 5 | B .

If G,X = G,X, then R, = R, and I — R, is nonsingular. If G,X # G, X, then
we have 0 < (I — G, X)"Y(-E,) < (I - G,X) ' (-E,) and (I — G, X) ' (-E,) #
(I - G,X)"'(—E,) since E, < 0. It follows from the Perron-Frobenius theory that
p((I = Gy R) " (~E4)) < pl(I — Gy X) " (~E,)). Thus p(R,) < p(R,) = 1 and again
I — R, is nonsingular. Now (4.11) can be rewritten as

H{ )5( } = [ )5( ]y(]ﬂ%)([—ﬁv)l. (4.12)

Thus X is also a nonnegative solution of (1.1). Since X is minimal we have X = X
and so lim X = X. Now, the sequence {Hj} produced by the doubling algorithm
is such that Hy = Xor (see [1]). Therefore, lim H, = X, as required. The proof of
lim Gy, =Y is similar. 0

REMARK 4.2. When p = 0, the convergence of the doubling algorithm is not
quadratic in general since the convergence of {Xj} in (4.8) is sublinear in general.
But the relation Hp = X itself says that the convergence of the doubling algorithm
is much faster than the basic fixed point iteration. The convergence in this case has
been observed to be linear with rate 1/2.
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In the doubling algorithm, we have the freedom to choose the parameter . In
view of (4.4) and (4.5), the next result says v = max{max a;;, maxd;;} is optimal, in
some sense, for the doubling algorithm.

THEOREM 4.3. For~y > max{max a;;, maxd;; }, p(Ry) and p(S) are nondecreas-
ing functions of .

Proof. Since R = D — CX is an irreducible M-matrix, it can be written in
the form sI — N, where N > 0 is irreducible. It follows from the Perron-Frobenius
theorem that there is a positive vector v such that Rv = A,v. Now

—Ryv =+ R)" (v = Ryv = (v + ) "1 (y = An)v.

Since —R, > 0, it follows from the Perron-Frobenius theory that p(R,) = p(—R,) =
(v + An) "1y — An), which is a nondecreasing function of 4. Similarly, p(S,) is a
nondecreasing function of . O

5. A shift technique. In this section we assume that M is an irreducible sin-
gular M-matrix. The vectors v and v are as in (2.1), and we have three cases:
u> 0,14 =0and g < 0. The next result shows that the case p < 0 is easily reduced
to the case p > 0.

LEMMA 5.1. The matriz X is the minimal nonnegative solution of (1.1) if and
only if Z = X7 is the minmal nonnegative solution of the equation

70Tz —zAT - D7 + BT =0. (5.1)

The equation (1.1) is transient if and only if the equation (5.1) is positive recurrent.
Proof. The first statement is easily shown by taking transpose on both sides of
the equation. The M-matrix corresponding to (5.1) is

AT *CT
M; = |: _BT DT :|

Since

[vgvlT]Mtzo, M, [ 2 } =0,
U1

the second statement follows readily. 0

REMARK 5.2. When p < 0, from the above proof and Theorem 2.1 we know
that the minimal nonnegative solution X of (1.1) is such that X7 uy = uy, or in other
words, ud X = uf.

From now on, we assume that p > 0.

Our shift technique will be based on the following result (see also [16]).

LEMMA 5.3. Let T be a singular matriz and Tw = 0 for a nonzero vector w.
Assume that v is a vector with r"w = 1 and n is a scalar. Then the eigenvalues of
the matriz

f:T—i—ner

are those of T' except that one zero eigenvalue of T is replaced by 1.
Proof. We may easily verify that T— X = (T —\I)(I — X~ 'nwr™) for any complex
number A different from zero. Taking determinants one has that, for any A # 0,

det(T — AI) = det(T — AI)%.
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By using a continuity argument, since A = 0 is a zero of det(T' — AI), the above
equation holds for any A. This completes the proof. 0
We now construct a rank-one modification of the matrix H in (1.3):

H=H+ nop?, (5.2)

where > 0 is a scalar and p > 0 is a vector with pTv = 1. Since H is a singular
matrix with Hv = 0, we know from Lemma 5.3 that the eigenvalues of H are those
of H except that one zero eigenvalue of H is replaced by 7.
We write p?' = (pf',pl) and
D -C
s M = ~ ~
-B A

)

where

D=D+nupt, C=C—nupl,

B=B+ nuapt, A=A-— napd .
Corresponding to M we define the new NARE
2C%Z - 7ZD — AZ+ B =0. (5.3)

We have the following important property about the NARE (5.3).

THEOREM 5.4. If u > 0, then Z = X is a solution of the NARE (5.3) and
a(ﬁ - éX) ={A1,...,An_1,n}, where X is the minimal nonnegative solution of the
original NARE (1.1).

Proof. Observe that

XCX - XD—AX+B=XCX - XD —AX + B —n(Xvi — v2)(pL X +p7).

Since X is a solution of (1.1) and Xv; = ve by Theorem 2.1, X is also a solution of
the shifted equation (5.3). We have D — CX = D — CX + nu1 (pT + pL X). Since
(D — CX)v; = Dv; — Cvy = 0 and (p¥ + pI' X)v; = pTv = 1, the eigenvalues of
D —CX are Aly- -3 An—1,7 by Theorem 2.2 and Lemma 5.3. 0

In what follows we will show that the dual equation of (5.3) has a solution
Y such that the eigenvalues of ,(j — E?) are the remaining eigenvalues of H:

Andls .-y Antm-
LEMMA 5.5. The eigenvalues of the matrix

W— npi (v1 = Yvs) n(plY +p3)
(B +nvapi)(v1 = Yv2)  —(A—BY —nua(p{Y +p3))

are 1, )\n+1a ce )\n+m
Proof. We have

1
WWo+n{ s } [ pl(v1 —Yvy) plY +p] |,
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where
0 0
Wo = { B(v; — Yvy) —(A— BY) ] '

The eigenvalues of Wy are 0, A\pt1, ..., Aptm by Theorem 2.2. Since

1 T T T 1 T

Wo v =0, [p1(vlfyv2) nY +p; ] =pv=1,

2 U2

the eigenvalues of W are 1, An41, ..., An+m by Lemma 5.3. 0

LEMMA 5.6. If > 0, then there is a positive vector f such that (1, f1) is a left
eigenvector of W' corresponding to the eigenvalue n.

Proof. When p > 0, we have Yvy < v; by Theorem 2.1. Since A — BY is an
irreducible M-matrix, A — BY — nua(p{Y + pd) is an irreducible Z-matrix. Since
n(pTY +pl) # 0 and (B + nuep?)(v1 — Ywg) # 0, the matrix W is irreducible by a
simple graph argument. It is clear that W can be written in the form N — sI, where
N > 0 is irreducible. The result then follows from the Perron—Frobenius theorem.
]

LEMMA 5.7. If > 0, then the matriz Y =Y + (Yva —v1)fT is a solution of the
dual equation of (5.3).

Proof. Let R(Z) = ZBZ — ZA — DZ + C and R(Z) = ZBZ — ZA— DZ + C.
We are to show 7%()7) = 0. Since R(Y) = 0, we have

R(Y) = (R(Y) = R(Y)) + (R(Y) = R(Y)).
A straightforward computation shows
R(Y) = R(Y) = (Y2 —01)(p{ ¥ + )
=n(Yvz —v1)(L+ fTo2)(pY +p3 +p1 (Yoo — 1) f7).
Also, we have
RY) = R(Y) = (Yvo — 1) (fTB(Yvy — 1) fT — fT(A— BY)).
where we have used the fact that
(D—-YB)(Yvs —v1) = —Dvy +YBuv1 + (DY —YBY)v,
=—Dvy +YBu; + (C—Y Ay =0.
Thus, to show R(Y) = 0, we only need to check

B +nvop] ) (Yva — v1) 7 +mpt (Yvo —vg) f7
—fT(A—=BY —nqua(p{Y +p3)) +n(p1Y +pd) =0,

which is true by the choice of f in Lemma 5.6. O

We now show that the solution Y has the desired spectral property.

THEOREM 5.8. If u > 0, then the solution Y of the dual equation of (5.3) given
in Lemma 5.7 is such that O‘(A\— El/}) ={-Xnt1s oy —Antm]-

Proof. Notice that

A—BY = A—BY —qua(pY +p3) — (B + nuapi ) (Yvz — v1) 7.
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. Wii Wia] .
For the matrix W = [Wl’l Wl’z} in Lemma 5.5, we have
2,1 Wa2

1 f7T 1 77170 [1 4T 1 —fT7 [ n 0
{o I]W[O I} {o I]W{O I }[Wm ~(A-BY)

where we have used Lemma 5.6. Therefore, the eigenvalues of A — BY are —Ant1,
< vy —An+m by Lemma 5.5. 0

The case p = 0 has to be treated separately since Yvs = vy in this case and
thus the matrix W in Lemma 5.5 does not have a left eigenvector of the form (1, fT)
corresponding to the eigenvalue 1. In this case, we need to assume p; > 0. Actually,
it is advisable in general to use a vector p with p; > 0 also in the case p > 0, since
this choice of p guarantees that the matrix Y is bounded independent of the nearness
to null recurrence (as can be seen in the proof of the following theorem). In the next
section, however, we will use a vector p without this assumption for a special class of
the NARE (1.1). There, the boundedness of Y independent of the nearness to null
recurrence will be guaranteed in another way.

THEOREM 5.9. If u =0 and p; > 0, then the dual equation of (5.3) has a solution
Y such that (A — BY) = {=Ans1,.. ., —Ansm}-

Proof. We use a continuity argument similar to the one used in [9] when a shift
technique in [15] is used for null recurrent quasi-birth-death problems. We introduce
the irreducible singular M-matrix

D) —C(k) D e
ME) =1 "y @) }:[—(lJr}C)B (1+1)4

(k = 1,2,...). The left and right eigenvectors of M (k) corresponding to the zero
eigenvalue are given by

1._
E) 1“23
Thus, the NARE corresponding to M (k)

ul(k) = ui, UQ(k) = (]. +

2CZ — ZD — A(k)Z + B(k) =0 (5.4)

is positive recurrent since u (k)T vi(k) > us (k)T ve(k). Let Y (k) be the minimal non-
negative solution of the dual equation of (5.4). Then Y (k)ve < v1 and in particular the
sequence {Y'(k)} is bounded. When M is replaced by M (k), we have a matrix W (k)
corresponding to the matrix W in Lemma 5.5. Let (1, f(k)T) be the left eigenvector
of W (k) corresponding to the eigenvalue 1. Now, Y (k) = Y (k) + (Y (k)va — v1) f (k)T
is a solution of the dual equation of

ZCZ — ZD — A(k)Z + B(k) = 0,
where A(k) = A(k) —nuap? and B(k) = B(k) +nuapT, and the eigenvalues of A( )—

B(k)Y (k) are those of A(k ) B(k)Y (k). We need to show that the sequence {Y (k)}
is bounded. Since (1, f(k)T)W (k) = n(1, f(k)T), we have

n=mnpi (v1 = Y(k)v2) + f(k)" (B(k) + nuap! ) (v1 — Y (k)v2)
> f(k)" (nuapt ) (v1 — Y (k)v2)
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and thus
FR)T (vapt) (v1 = Y (k)vz) = pi (v1 = Y (k)v2) f(k) vy < 1.

Since p1,va > 0, {(v1 — Y (k)va) f(k)T} is bounded and thus {Y (k)} is bounded. Let
Y be any limit point of the sequence {?(k)} Then the eigenvalues of A — BY are
those of A — BY since limY (k) =Y by Theorem 3.3 of [11]. O

When p = 0, the matrix H has two zero eigenvalues. The above shift technique
moves one zero eigenvalue to a positive number. We may use a double-shift to move the
other zero eigenvalue to a negative number. Recall that Hv = 0, where v = [ Z; ] ,

U1

and wTH = 0, where w = { } . We define the matrix

oy
H = H +nup" + &qu’, (5.5)

where n > 0, £ < 0, p and ¢ are such that p’v = ¢"w = 1. Since v and w are
orthogonal vectors, the double-shift moves one zero eigenvalue to  and the other to
€. Indeed, the eigenvalues of H = H + £quw” are those of HT = HT + €wq™, which
are the eigenvalues of H except that one zero eigenvalue is replaced by £, by Lemma
5.3. Also, the eigenvalues of H = H + nup” are the eigenvalues of H except that the
remaining zero eigenvalue is replaced by 1, by Lemma 5.3 again.

From H we may define a new Riccati equation

707 — 7D —AZ+B =0. (5.6)

As before, the minimal nonnegative solution X of (1.1) is a solution of (5.6) such
that o(D — CX) = {n,A1,..., A\n_1}. However, it seems very difficult to determine
the existence of a solution Y of the dual equation of (5.6) such that 0(A — BY) =
{=¢, —Mt2,- -, —Antm}- We will not investigate the double-shift any further in this
paper.

6. The doubling algorithm applied to the shifted equation. In this section
we assume p > 0. We will show that the doubling algorithm applied to (5.3) converges
faster (if no breakdown occurs) than the doubling algorithm applied to (1.1). The
applicability of the SDA algorithm to the shifted equation for a general NARE is
still work in progress, but we will prove that no breakdown occurs under suitable
assumptions on the matrix M.

6.1. Convergence properties. By Theorems 5.4, 5.8 and 5.9, the matrices X
and Y are such that

17 [I7,~ =~ (Y] [V ~ 5o
a[L]-[L]@-an. a[T]-[T]ca-smn e
where o(D — CX) = {A1, ..., n—1,n}, 0(A — BY) = {=Apt1...,—Ansm}. Recall

that we need to assume p; > 0 for the vector p used in the shift technique when p = 0,
to get the second equation in (6.1).

We apply the Cayley transform with v > 0 to each of the equations in (6.1), thus
obtaining

@] g | =@y |ed-ex)

~ D)~

(ff—w)[ }Cw(ﬁ—éf/):(ﬁ—t-y[) [ 3;” }
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We then proceed as in Section 3, with the equations (3.3) and (3.7) replaced by the
equations in (6.2), and obtain a sequence of matrices {Hy} by the doubling algorithm
(assuming that no breakdown occurs). The sequence {Hy} is going to approximate
X, the minimal nonnegative solution of (1.1).

As in Section 4, we can prove that

ok [~ ~ o~ ~
timsup %[y — X|| < p(C, (D — OX))p(C, (A~ BY)).

For easy comparison, we recall that the sequence { H,} generated in Section 3 is such
that

timsup /THi = XT < p(C, (D = CX))p(C, (4 - BY))
Note that

o(Cy(D = CX)) ={C;(M); -+, Cy(An—1), Gy (M)},
o(Cy(D = CX)) ={Cy(A1),...,Cy(An=1),Cy(0)},
o(Co(A = BY)) = (Cy(A = BY)) = {C(~Aus1)s -+ Cr (At}

By Theorem 2.2 and the property of the Cayley transform, we have p(C, (ﬁ — C'X)) <
p(Cy(D — CX)) = 1 and p(CA,(A\— BY)) = p(Cy(A — BY)) < 1. Therefore the
convergence of the doubling algorithm applied to the shifted equation is faster than
the convergence of the same algorithm applied to the original equation. As we will
show in the numerical experiments, the number of steps necessary for convergence
can decrease dramatically by using the shift technique. In particular, when p = 0,
the SDA algorithm applied to the shifted equation still has quadratic convergence.
According to the results in [11], the shift equation is also better conditioned than the
original equation.

At this point it must be specified which is the best choice for the parameter 7 in
terms of the speed of convergence. In fact, the fastest convergence is expected when
p(Cy(D — CX)) is minimal, i.e., when |C,(n)| < max{|Cy(X\;)|,7=1,...,n—1}. This
happens, for instance, if n = v (i.e. C;(n) =0).

6.2. Applicability for a special class of NARE. We can prove the applica-
bility of the SDA algorithm to the shifted equation for a special class of the NARE
(1.1) and for proper choices of 1, p and ~.

The special class consists of equations for which

(a) either C has at least one positive column or D has at least one column with

no zero entries.

(b) either A is irreducible or B has a nonzero row.

For ease of notation, we assume without loss of generality [11] that v = e, the
vector of ones. We define r; € R™ and ro € R™ by

(’rl)j: |d1]|7 jzla"'7na (T2)j: inncij7 jzla"'7m7

min
1<i<n,i#j 1<i<

and define r by 77 = (7T, r1). We have r # 0 for each equation in the special class,

and we use the shift (5.2) with n =rTe and p = r/r"e.
We are going to show that the matrix M is such that

B> 0, C > 0, I® A+DT@Ilisa nonsingular M-matrix, (6.3)
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where ® is the Kronecker prgducﬁ. It is clear that B >0, c > 0. We only need to
show that the Z-matrix I ® A + DT ® I is a nonsingular M-matrix. Note that

(D —rjel)e— (C —ery)e = De — Ce=0.
So D —r¥el is an M-matrix. Now,

I®2+ET®IZI®(A—e7“2T)+(D—rgeI)T®I+rgeI®I
=I®A—-el +riel)+(D-rlen? o1

Since (A—erd +rlel)e = Ae = Be > 0, A—erd +rlel is a nonsingular M-matrix by
the condition (b) for the special class. Therefore, I ® A+ DT ®1I s also a nonsingular
M-matrix.

Proceeding as in Section 3, it is not difficult to show that the doubling algorithm
can be applied to the NARE corresponding to M with v > max{max a;;, maxd;; } +
|7|lco- Indeed, the matrices to be inverted in the algorithm are all nonsingular M-
matrices, as in Section 3.

By our definition of the vector p, we no longer have p; > 0 unless all off-diagonal
elements of D are negative. Therefore, we need a different proof for the existence of
Y with the property in (6.1).

We proceed as follows. First, we note that

YBY ~YA-DY +C =n(Ye—e)(pTY +pl) <0,
By Theorem 2.3 of [7], there is a minimal Y0 < % <Y such that

YBY - YA-DY+C =0.

Note that
~[1 v] [1 Y
iy h]=lx 7]

When g > 0, we have Xe = e and Ye < e and the matrix

Iy

X I
is nonsingular. So the eigenvalues of A—BY are —An+1s .-y —Antm. By a continuity
argument, the eigenvalues of A — BY are also —A,41,..., —Antm when p = 0.

7. Numerical experiments. We compare the numerical behavior of the SDA
algorithm applied to (1.1) and to the shifted equation (5.3), when pu > 0. Recall that
the case p < 0 is easily reduced to the case p > 0 through Lemma 5.1.

The numerical experiments are performed by using Matlab; the stop condition is
min{ | Exlls, | Fill } < 10715,

We take v = max{maxa;;, maxd;;} for the Cayley transform, as suggested by
Theorem 4.3. For the shift technique, we take 7 = v and p = e/vTe, where e is the
vector (of suitable size) with all components equal to 1.

TEST 7.1. [7] Random choice of a singular M -matriz with Me = 0. To construct
M, we generate R, a 100 x 100 random matrix, and define M = diag(Re) — R. The
matrices A, B,C and D are 50 x 50.
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We generate 5 different matrices M in this way, each with g > 0. In Table 7.1 we
report the number of iterations and the relative residual, defined as

IXCX — XD — AX + B
[ XCX|ls + [ XDy + [[AX [+ + |Bll”

res —

As one can see, the number of steps applied to the shifted equation is smaller, while
the residual error remains roughly the same (u = 2.2 x 10716 is the unit roundoff).

TABLE 7.1
SDA applied to original and shifted NARE

SDA SDA applied to shifted NARE
iter res/err iter res/err
Test 1 | 12-13 | res=1.1u—2.1u 5 res=1.2u—1.7u
Test 2 33 err=1.6 x 107° 5 err=2.2 x 10716
Test 3 18 | err=35x10"13 | 4 err=2.3 x 10713

TEST 7.2. [2, Example 1]A null recurrent case. Let

0.003 —0.001 -0.001 -0.001
-0.001 0.003 —0.001 -0.001
—0.001 -0.001 0.003 —0.001
—0.001 -0.001 -0.001 0.003

where D is a 2 X 2 matrix. The minimal positive solution is X = %E2727 where Ey, ,
is the m X n matrix having all entries equal to 1.

In this case the SDA algorithm shows linear convergence while the SDA applied
to the shifted equation has quadratic convergence. Indeed, as reported in Table 7.1
the number of steps decreases dramatically. Since the solution is explicitly known,
we have compared the absolute error, defined as the 1-norm of the difference between
the exact and the computed solution, obtained with both methods. Observe that the
solution computed without performing the shift is much less accurate than the one
obtained by applying the shift. This phenomenon is to be expected in view of the
theoretical results in [11].

TEST 7.3. [2, Example 3] A positive recurrent Markov chain with non-square
coefficients. In this example A = diag(0.018 E5 1), D = diag(180.002 E151)—10 E1g1s,
B =0.001 E2 15 and C' = BT. The solution is known to be 1—18E2718. The results are
shown in Table 7.1, the reduction of the number of iterations for the shifted equation
is significant.
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